Introduction:
Distributed Information Systems - An Overview
Today’s Questions

1. What is an Information System?

2. What is a Distributed Information Systems?
What do you think?

- What is an Information System?

- What are problems to be solved when building an Information System?
1. Information Systems

- An information system is a software that manages facts about some aspect of the state of the real world for a specific purpose.
 - the facts are represented as some mathematical structure (data structure), e.g. list, set, graph, matrix, relation etc., over domains and are called data
 - the domains are strings without further structure and are called content
 - the data can be obtained by sensors, by human input or by computation
 - the relationship to the real world is expressed as an interpretation relationship
- Information = Data that is interpreted

This is a definition of information systems in a nutshell: “An information system is a software that manages facts about some aspect of the state of the real world for a specific purpose”. This definition contains a number of concepts that require explanation:

facts: They are called data. Data is given as some mathematical structure – called then the data structure (that describes what is the domain, the relationships among the objects in the domain, and possible predicates and operations). The domains are (sets of) strings that are not further structured. Data can be obtained in various ways.

real world: They real world is not necessarily our physical real world. It can be anything from human concepts (e.g. a legal information system) to virtual worlds existing in a computer system or network (e.g. information systems for network management).

purpose: every information system has an entity (human, computer) that makes use of it. It does so in order to perform a certain task related to some aspect of the real world (e.g. making a decision, performing a computation etc.). In order to do so it performs an interpretation of the data, this is where the interpretation comes into play. The interpretation relates the structure (also called the syntax) with the semantics (the “real world”). The interpretation can be a formalized relationship, if the “real world” is formalized, or just exist informally.

aspect: this implies that there exist many different ways to construct information systems.

What “managing” means and what is the nature of the software that performs this management we want to explore in the following in more detail.
These examples show that in particular there not always exists a unique interpretation and/or purpose for the same facts. It is also not the case that always humans are necessarily involved in the interpretation of the facts. For example, if in a hypothetical future fully automated bank the clerks and programmers would disappear, it might be possible that the only interpretation of the bank account data is performed through transaction programs.
Problem 1: Keeping the Data

- Data needs to be kept safely over time
 - on some medium (e.g. memory, disk, tape)
 - independent of lifetime of programs
 - independent of how it is accessed, failures

- Operations on data can be complex
 - input (update), output (querying)
 - describe specialized data structure for specific applications: data modelling, schemas

- The amount of data is usually large
 - smooth transition among different media (e.g. memory - disk)
 - efficient storage schemes (e.g. sparse - dense)
 - efficient access schemes (e.g. indexing)

- Data Management, Database Systems, Database Management Systems

One key function of an information systems is to “manage” the facts: managing means to maintain them and to perform operations on them, i.e. to maintain a state and to perform state transitions. This is what also transient programs do, but different to them the state should be maintained independently of any programs lifetime, and therefore some medium is required to save it over time. The amount of data that is stored is usually very large, which poses serious problems of efficiency. This aspect of information systems is covered by data management systems.
The second aspect of information systems is related to the problem of having multiple interpretations. There exists an abundance of data. The problem is whether the user (or the applications) can interpret it properly. I.e. as long as no proper interpretation exists the data is of no use. This is what is called information starvation. In particular, human attention is the scarcest resource that exists, and humans require the data in a form that they are able to interpret, which is not necessarily the form it is available.
Supporting Interpretation(s)

- Proper interpretation for supplied information is required!
- Must be compatible with R (relationship of interpretations between the supply and demand)

This figure illustrates the situation: there exist many information systems supplying data, but having their own proper interpretation which does not necessarily match our purpose. There exists some relationship R between the real world aspects the data suppliers relate their data to and the real world aspects we are interested in. Given this relationship (which is typically not formalized) the problem is now to provide a corresponding relationship R' between the data we are supplied with and data that we are able to interpret. Since R is normally not well specified, finding R' is in general a difficult problem. From the viewpoint of the data suppliers introducing R' introduces a new interpretation of their data, and thus creates a new “real world aspect” that they can relate their data to. Thus by creating a proper interpretation of supplied data we implicitly also connect the data suppliers to “new worlds”.

©2002, Karl Aberer, EPFL-SSCI, Laboratoire de systèmes d’informations répartis
These examples illustrate of how from existing data (supply denotes the interpretation of the supplier), new data (demand denotes the required interpretation of the demander) is created for new purposes. Note that the necessary operations can be everything from simple manipulations of data structures to complex algorithmic procedures such as text or image analysis.
We may consider the available interpretations, together with the specifications of the data structures, as the knowledge that is in use. This is illustrated by the above figure from a famous paper from Gio Wiederhold, dating from 1992, (Mediators in the Architecture of Future Information Systems. IEEE Computer 25(3): 38-49 (1992)) It illustrates how in the data loop data is gathered, stored and maintained through state changes, and then when interacting with knowledge (mostly humans, but not exclusively) new interpretations are created through selection, integration, and abstraction. These new interpretations serve new purposes of decision-making and action. From this new knowledge is gained (via experience and education), which further feeds back in the knowledge cycle. Also some of the assumptions in Wiederhold’s paper are in the meanwhile made obsolete by the progress of information technology, and in particular the Web, the fundamental model still holds true.
From the need of creating new interpretations from existing data we can derive the functional requirements imposed on information management. First of course the creation of the interpretations, typically an algorithmic issue, but then also the management and application of the various interpretations that exist.
There exists a lot of confusion between the notions of data and information management. The reason is that the two issues are inherently connected as we have seen before, and that the distinction is a matter of emphasis.
This is a somewhat simplified overview of the main problems in data and information management: we can classify them into issues related to modeling (i.e. what are possible representations for the facts we are dealing with), issues related to algorithms (i.e. how can we perform operations on the models efficiently and reliably), and issues related to the implementation (how can we build and use real software systems for using the models and algorithms). Each of these aspects we can further distinguish two main categories: in modeling there is a clear distinction whether we are interested only in the syntactic issues (i.e. not considering the interpretation of the model) and semantic issues (taking into account the interpretation). In algorithms we can distinguish between issues of reliability (how can one safeguard against all kinds of adverse effects) and efficiency (how can the systems made scalable). With respect to implementation there are issues of architecting the systems and of using the systems in a systematic way.

In the following we summarize the main “inventions” that have been made with respect to each of those aspects.
With respect to data modeling three main categories of models have evolved: unstructured, structured and semi-structured. Note that data models are not only defined by the structure, but also by the operations (some examples are given for illustration) and "semantic" constraints. Constraints exclude certain structures that would be syntactically possible but are not allowed.
Semi-Structured Data Models

- Important aspects for data models in distributed information systems and the Web
 - representation of relationships: hypertext graphs, semantic networks
 - self-describing: schema-less data
 - volatility: changing schemas
 - standardization: represent data from any structured model
 - serializability: exchange of documents

With the emergence of the web a new class of models gained importance, semi-structured data models. There exist various reasons for their success, all due to issues related to distribution and communication:

- serializability (i.e. the possibility to represent the data as a string that can be sent over a communication channel) is a more obvious reason
- the relaxation of using schemas, which are very useful if the interpretation of the data is stable, but not if the same data is used under different interpretations. Still allowing to maintain some schematic information is supported
- simple representation of relationships (referencing is one of the fundamental needs in a distributed information system)
This figure illustrates the use of serialization: within information systems data is kept in potentially complex structures. For communication it has to be converted into a representation that is “serial”, i.e. a string. Data models that provide a canonical serialization, such as XML, are thus a natural choice in a communication intensive environment.
Problem 2. Semantics (Interpretation)

- Query processing: use explicit structure of data for interpretation
 - Locating data (typically using first-order logical statements)
 \[
 \text{Pro} = \{ p \mid \text{Earning}(p) > 6000 \text{ and Driving Dist}(p) > 280 \}
 \]

PGA Tour	ID	Name	Earning	Driving Dist
1	T. Woods	6496	294	
2	S. Garcia	2319	285	
3	E. Els	3180	279	
4	D. Toms	2534	271	
5	J. Daly	630	305	
6	D. Duval	489	290	

- Data Mining: turn implicit structure of data into explicit
 - Detecting (unexpected) patterns in structured data
 \[
 \text{Earning}(p) > 1000 \Rightarrow \text{Driving Dist}(p) > 270
 \]
 (confidence 75%, support 66%)

PGA Tour	ID	Name	Earning	Driving Dist
1	T. Woods	6496	294	
2	S. Garcia	2319	285	
3	E. Els	3180	279	
4	D. Toms	2534	271	
5	J. Daly	630	305	
6	D. Duval	489	290	

- Information retrieval: use implicit structure of data for interpretation
 - Locating relevant information

In order to create new interpretations of data we can distinguish three kinds of approaches:

1. the database approach: here from an explicitly available structure another explicit structure is generated. To specify the mapping usually first order logic used (though also other functions might be involved, such as manipulation of multidimensional arrays in online-analytical processing). This new structure is associated with an interpretation (e.g. “Pro” is a real-world concept)

2. the data mining approach: here the interpretation is based on the content. Implicit structures that are detected in the content are turned into explicitly available structures, for which presumably an interpretation exists. The example shows an example where the structure is given in form of a rule (effectively a kind of an additional constraint on the data) that has an interpretation.

3. the information retrieval approach: it makes use of implicitly available structures in the content without making these ever explicit. The standard problem that is solved in that way is to provide a relevance relationship among contents that is interpreted in the “real world” as the two contents are relevant to each other (whatever does this mean?). This relevance relationship is then used to locate starting from one content more related contents.
Example: Information Retrieval

- Analysis of term-document matrix reveals large Eigen-values
- Interpreted as concepts = clusters = implicit structure
- Concepts are used to retrieve similar documents

This example shows how in information retrieval effectively use is made of implicit structure of the content.
Interpretations and their Evaluation

• The "database approach"
 - consult the users in an application
 - develop a conceptual model
 - develop, implement and use the logical model
 - re-consult the user and start over

• The "data mining approach"
 - take a learning dataset
 - build a model from it
 - take a test dataset
 - compute how well the model matches

• The "information retrieval approach"
 - ask human users for the relevance of information for a problem
 - apply the retrieval algorithm to the same problems
 - compare the results: recall, precision

The problem when creating new interpretations (which we have identified earlier as being the central task of information management) is to be able to assess whether the interpretation created match the expectations. Again we can distinguish different methods of doing that (which does not exclude that there exist others).

Both the database and information retrieval approach perform the assessment (mostly) by involving the human user. In contrast, in data mining formal criteria for the evaluation of an interpretation are set up in advance, and then checked once an interpretation has been derived. This makes sense, since in data mining the interpretation relationship exists between existing data and data derived from the existing data, and thus can be formally analysed.
Problem 3. Scalability for Large Databases

- Locate data on available storage medium in an efficient manner
 - Blocks, files, network nodes, ...

- Provide efficient access to data for specific addressing methods
 (Indexing)
 - attributes, predicates, paths, ...
 - Data access structure (tree, hash table etc.)

- Example: B+-Tree
 - tree nodes match block size of storage systems
 - tree is balanced
 - all operations (search, update) logarithmic

Database research has devoted an enormous amount of research on ever increasing the efficiency of database systems. Two main problems are addressed: how can one make optimal use of the existing infrastructure by exploiting it’s physical characteristics, and how can methods be built to efficiently locate data. B+-Tree’s are just one, but one of the most important, examples illustrating both aspects.

However, it must not be neglected that a huge amount of work related to efficient access to data has also been invested in the are of information management. The reason is the following: it is not only the physical characteristics of the environment that can be exploited for efficiency, but it is also knowledge on the nature of the data that can be exploited to more efficiently access it. This knowledge can however only be obtained if there exists an interpretation of the data. For example, in text retrieval knowledge on the characteristics of textual data is exploited in order to devise better storage and access schemes. This work is also closely related to information theory, e.g. aspects related to compression.
B+-Tree

©2002, Karl Aberer, EPFL-SSC, Laboratoire de systèmes d'informations répartis
Problem 4. Transaction Management

- **Maintain consistent state**
 - in the presence of multiple users
 - in the presence of failures

- **Example**
 - acc1 is a data object (tuple, element, object, …)
 - T1 and T2 are different users, what goes wrong?

<table>
<thead>
<tr>
<th>Transactions</th>
<th>T2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1:</td>
<td></td>
</tr>
<tr>
<td>read(acc1)</td>
<td>read(acc1)</td>
</tr>
<tr>
<td>acc1 := acc1 + 10</td>
<td>acc1 := acc1 + 20</td>
</tr>
<tr>
<td>write(acc1)</td>
<td>write(acc1)</td>
</tr>
<tr>
<td>commit</td>
<td>commit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>acc1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

The second major line of research on databases has been on transactions, i.e., how to run a data management system safely. Here we illustrate just one possible problem that is dealt with by transaction management.
Abstraction plays not only a role when creating new interpretations, but also when architecting an information system. This leads to different abstraction principles that are used to organize the systems that manage the information in a modular way and make them easier to manage. In particular (relational) database systems developed several extremely successful abstraction principles in the system design. Some of these principles are being also applied to other types of information system, more concerned with information management. For example, in data mining the use of declarative mining languages is proposed and studied.
Problem 6. Methodologies

• Relational Database Design Methodology
 1. Consult the user for requirements
 2. Develop a conceptual schema (e.g. entity-relationship)
 3. Transform into logical schema (e.g. relational)
 4. Normalize the logical schema (e.g. avoid redundancies)
 5. Develop the physical schema (e.g. indices)
 6. Deploy the application

• Knowledge Discovery Methodology
 1. preprocess data (e.g. cleaning)
 2. transform into common model
 3. discover patterns
 4. present them to the user
 5. use the rules

Finally, each of the sub-disciplines developed over time it’s methodologies of how to approach standard problems in a systematic way. We mention here two typical and widely used examples of such methodologies.
Summary

• What is an Information System?

• What are problems to be solved when building an Information System?
What do you think?

• What is a Distributed Information System?

• What are specific problems to be solved when building a Distributed Information System?
Except in the very early days, information systems had always been used in computer networks. This does not imply any fundamental problems in addition to those we have discussed up to now as long as the information system is centralized, i.e. running on one node under a single authority.
Physical Distribution

- Distribution of data
 - support use of distributed physical resources: improve locality of access, scalability, parallelism in the execution

There exist however many reasons not to keep all data in a single node on the network. Some of these reasons are related to the improved use of existing resources. We might want to move data close to the node where it is processed, we might take advantage of parallel processing of the data, and we might want to avoid bottlenecks in order to improve scalability of the systems. Thus, we want to distribute the data. Nevertheless we don’t want to give up the abstraction that we are still accessing a single information system that is running under a single authority.
Things can become more complex if we give up on the assumption, that a distributed information system should appear like one single information system when it is distributed over a network. In fact, we might want to make the distribution visible in order to enable multiple authorities to infuse their knowledge into their network, in order to make information systems that where formerly separated working together, and in order to make different interpretations of data available. Thus we are considering distribution of knowledge. In order to make use of such a logically distributed information system we need to support the application/user in order to overcome some of the problems related to logical distribution, without necessarily making the fact that the data is logically distributed completely transparent.
Physical vs. Logical Distribution

- Physical Distribution
 - requires control of distributed potentially autonomous sites
- Issues
 - consistency (autonomously controlled nodes)
 - efficiency
 - heterogeneous infrastructures

- Logical Distribution
 - autonomy of nodes can lead to syntactic heterogeneity (models, schemas, data) and semantic heterogeneity (interpretation)
- (additional) Issues
 - overcome semantic heterogeneity (reconciling different interpretations)
 - create new information by aggregating distributed information (combine different interpretations)

- Three dimensions: distribution - autonomy - heterogeneity

The problems to be solved when dealing with distribution (assuming that communication issues are dealt with) are related to autonomy. Autonomy expresses that different nodes can take decisions independently.

With respect to physical distribution the main problem is that the distributed nodes may take decisions on how to perform operations independently, which may lead to inconsistent or inefficient behavior. Thus mechanisms need to be put in place in order to coordinate the behavior in a way, that it appears to the applications as if they were interacting with a single, efficient information system.

With respect to logical distribution the main (additional) problem is that nodes may take decision related to the interpretation of their data independently, both at the syntactic and the semantic level, leading to heterogeneity. However, logical distribution bears also a potential: by combining data from (many) different sources we may create new interpretations, which were not possible before. We can view this as the equivalent of achieving scalability through resource distribution: by knowledge distribution we make gaining knowledge a more scalable process.
Logical Distribution: Technical Approaches

• **Overcome semantic heterogeneity: information integration**
 - data model mapping (syntactic heterogeneity) → semi-structured data
 - schema mapping and integration (semantic heterogeneity)
 - agreement on interpretation (semantics) → ontologies
 - system issues: physical organization of distributed data access and implementation of mappings
 • federated database architectures
 • mediator architectures

• **Create new information: distributed information retrieval and web data mining**
 - new algorithmic issues
 - system issues: physically integrating or accessing the distributed data
 • data warehousing
 • web crawling

Dealing with logical distribution poses both new algorithmic and systems issues, of which we mention a few of the most important.
One important approach to overcome semantic heterogeneity is to match between different data schemas (we could do the same also at the level of individual facts/data, but this would be less efficient). The standard methodology is to first identify which constituents of a schema correspond to each other, then to identify whether there exist differences in the way the same information is represented and find ways to overcome them, and then to construct a mapping for the data. In databases the mapping is typically performed using a query language.
This example illustrates the standard architectural approach for integrating information systems: first syntactic heterogeneity is overcome, by wrapping the data and transforming it into a common format (e.g. XML). Then semantic heterogeneity is overcome by mapping the various schemas into a common global schema. Nowadays, many of these systems use a data warehousing approach, i.e. the data is physically stored in the integrated information systems. Among the most popular applications of these systems are prices comparison web sites.
Ontologies

- Ontologies are an explicit specification of a conceptualization of the real world (Gruber, 1993)
- Ideally
 - different information systems agree on the same ontology
 - relate their model/schema/data elements to the ontology
 - mapping can be constructed via the ontology
- Issues
 - ontology languages (e.g. RDF), mappings and engineering
- Problem: requires agreement on the conceptualization of the real world!

In order to obtain a better handle on the problem of dealing with different interpretations of data, a possibility is to make the interpretation a formally described entity. This requires the use of some “proxy” for the real world that is formally describable. These “proxies” are called ontologies.

Example: The reader of this text may consider the text itself as an attempt to create an ontology for the area of distributed information systems.
Reconciling distributed knowledge is another important aspect of logical distribution of information. The most popular example for this is Google, which uses the link structure of the Web (where the interpretation is, that setting a link expresses something about the importance of the referenced site) in order to derive information on the relevance of documents.
Physical Distribution: Technical Approaches

- **Distributed Storage Management**
 - partitioning and distribution of data and index
 - replication, caching
 - Consistency of replicated data and of distributed dependent data

- **Distributed Transaction Management**
 - atomicity and durability (distributed commit protocols)
 - isolation

- **Distributed Querying and Filtering**
 - decomposition of queries and filters
 - information dissemination models

- **Remember: Goals**
 - Efficiency, Scalability, Robustness: make efficient use of resources
 - Abstraction: hide as many unnecessary details as possible

Physical distribution deals essentially with the distributed counterparts of the standard problems in central data management. Physical distribution introduces however one aspect that is essentially different from a centralized setting. Whereas in a centralized setting data is maintained (communicated) only over time, in a distributed setting it is additionally communicated over space (between the nodes). This leads to a variety of possibilities of how the relationship between data sources and data sinks can be organized, which we can characterize as different information dissemination models.
In distributed storage management the key question is of how to position the data in the network most effectively.
Having data that is dependent on each other (e.g. replicated) in the network poses the problem of performing operations on the data consistently in a distributed setting, which leads to the problem of distributed transaction management.
If data is distributed over a network, in order to retrieve it the information system has to solve the problem of how to efficiently locate the nodes that contain the desired data and to retrieve the data from there.
Information Dissemination Models

• Control
 - push: initiated by source
 - pull: initiated by consumer

• Event
 - periodic
 - conditional (e.g. on change)
 - ad-hoc

• Communication model
 - unicast (point-2-point)
 - broadcast
 - multicast

The dimension of communication opens a range of possibilities of how changes on the data state are propagated in the network (this is a problem that does not occur in a central information system, since there exists only a single state). We can classify those changes according to [Ozsu, Liu, Yang 1998] with respect to three dimensions, related to communication: control of the exchange, event leading to an exchange, and communication model.
In the classical Client-Server setting a client sends a request to the information system, and receives as a result a response.
In mobile broadcast a server broadcasts periodically all the available information to all clients (within it’s range). The clients select from the incoming data stream the data they are interested in.
In a publish-subscribe system the clients first deposit what information they are interested in (profile), and whenever new data arrives that is matching the profile the server sends the data to the client.
In P2P information systems no server exists. Every client propagates search request to local neighborhood, which further spreads the rumor till eventually some node can provide the requested data.
Summary

- What is a Distributed Information System?

- What are specific problems to be solved when building a Distributed Information System?
Scope of DIS

- Knowledge
- Data
- Model
 - Non-distributed
 - Distributed
 - Heterogeneous
 - Autonomous
- Algorithm
- System
Robust Technology

• (Relational) Database Servers
• Transaction Monitors and Web Application Servers
• Information Retrieval Engines and Web Search Engines
• WWW Standards
• Data Warehousing and Mining Tools
Evolving Technology

- New Forms of Physical Distribution
 - Mobility, Personalization
 - Embedded Information Systems
 - P2P Systems

- Semantic Interoperability
 - Semantic Web
 - Ontologies

- Self-Organization
 - Adaptability and Learning
 - Information Agents
 - Information Economy