An Implementation of the Contract Net Protocol Based on Marginal Cost Calculations

By Tuomas Sandholm
1993
Introduction

- Formalization of the bidding and awarding decision process
 - Formalization based on marginal cost calculations based on local agent criteria
 - Network as whole functions more effectively
 - CNP is extended to allow for clustering of tasks, to deal with the possibility of a large number of announcement and bid messages
 - Implementation of TRACONET is asynchronous, distributed and autonomous
Formal model

- Announcing
- Bidding
- Awarding decisions
- This model covers (differently from CNP)
 - Calculation of marginal costs
 - Clustering tasks into sets to be negotiated over as atomic bargaining items
 - Solving the problem of announcement message congestion
Vehicle routing problem

Dispach center 1
Dispach center 2
Dispach center 3
Dispach center 4
Dispach center 5
Vehicle routing problem

- Geographically dispersed dispatch centers
 - Overlapping working areas
- Deliveries initiated by factories
- Certain number of vehicles

- Routing problem
 - Vehicle attributes: cost per km, max duration, max length, max load weight, max volume
 - Optimization task
Solving the problem

- Each center – intelligent agent
 - Solves its own local routing problem
- Negotiates with each other
 - Exchanges with delivery tasks when it is profitable
 - Negotiation is real time
 - No global optimization
Message passing

AGENT 1

AGENT 2

AGENT 3

AGENT 4

AGENT 5

Winner

Looser

Looser

Looser

Looser

Winner
TRACONET architecture

- Each involved party can make a bid
- Announcements are not sent to every agent
- No fixed hierarchy
- Agent can act both as a manager and as a contractor
Agent structure

- Bidder
- Announcer
- Local control loop
- Agent
- Awarder
- Award taker
- Local Optimizer
Agent structure

- Bargaining system
 - Announcer
 - Bidder
 - Awarder
 - Award taker

- Local optimizer
 - Counting of marginal costs of a set of deliveries (to remove or to add)
 - Optimizing all deliveries
 - Removing and adding sets of deliveries to agent’s routing solution
Local control

- Agent’s routing solutions are made
- Start of LCL
 - Invoke of bidder, awarder, award taker, announcer
- Exiting/entering network dynamically
 - Joining
 - Exiting problems
 - Will not receive award (needs listening phase)
 - Other agents could be making a bid and will not receive even looser message (send “looser” messages)
Announcing

- \(c_{rem}(T) \) – marginal cost saved if the delivery set \(T \) is removed from routing solution

- \(c'_{rem}(T) \) – heuristic approximation of \(c_{rem}(T) \)

Randomly choose one of the deliveries ending in another center's main operation area.
\(T = \{ \text{the chosen delivery} \} \).
Maximum price of the announcement \(c_{max} = c'_{rem}(T) \).
For all centers except this center itself
 If the end stop of the delivery is in the center's main operation area
 Then send an announcement to the center.

- But (!) \(c_{rem}(T_1 \cup T_2) \neq c_{rem}(T_1) + c_{rem}(T_2) \)
Bidding

- Reads the announcements from other agents
- Needs to estimate $c_{\text{add}}(T_b)$

\[
c_{\text{add}}^{-}(T_b) = \min_{B \subseteq B_{\text{pos}}}(f\left(T_b \cup T_{\text{cur}} \cup T_{z \in B}\right) - f\left(T_{\text{cur}} \cup T_{z \in B}\right))
\]

\[
c_{\text{add}}^{+}(T_b) = \max_{B \subseteq B_{\text{pos}}}(f\left(T_b \cup T_{\text{cur}} \cup T_{z \in B}\right) - f\left(T_{\text{cur}} \cup T_{z \in B}\right))
\]

\[
c_{\text{add}}^{all}(T_b) = f\left(T_b \cup T_{\text{cur}} \cup T_{z \in B_{\text{pos}}}\right) - f\left(T_{\text{cur}} \cup T_{z \in B_{\text{pos}}}\right)
\]

\[
c_{\text{add}}^{\text{non}}(T_b) = f\left(T_b \cup T_{\text{cur}}\right) - f\left(T_{\text{cur}}\right)
\]
Bidding (semi-opportunistic calculation)

- heuristic approximation is used for calculation of f', for which $f(T) \leq f'(T)$ for any task set T

- $f'(T \cup T_{\text{cur}})$ is calculated from $f'(T_{\text{cur}})$ assuming that none of the agent’s unsettled bids are awarded

- Evaluation $c'_{\text{add}}(T)$ may lead to unbeneficial contracts

Read in all received announcements and call this set A.
For each announcement $a \in A$

Call the set of deliveries in a T_a and the maximum price c_{max}.
If $f'(T_{\text{cur}} \cup T_a \cup T_{\text{pos}}) < \infty$ (Feasibility check; T_{pos} defined w.r.t. a potential bid b with the deliveries of a.)

Set $c_{\text{bid}} = c'_{\text{add}}(T_a)$.
If $c_{\text{bid}} < c_{\text{max}}$

Send a bid with the identifier of the announcement, the name of this center and cost c_{bid}.

Šarūnas Girdzijauskas
I&C Doctoral School
Awarding

- Award is given for agent with most inexpensive bid
- After awarding, T_b is removed from agents T_{cur} and transportation current solution.
- If timeout – sends «looser» messages to all
- Agent checks if the awarding still beneficial to itself
Awarding

- Needs to estimate $c_{\text{rem}}(T_b)$

\[
c_{\text{rem}}^+(T_b) = \max_{B \subseteq B_{\text{pos}}} \left(f\left(T_{\text{cur}} \cup T_z \right) - f\left((T_{\text{cur}} - T_b) \cup T_z \right) \right)
\]

\[
c_{\text{rem}}^-(T_b) = \min_{B \subseteq B_{\text{pos}}} \left(f\left(T_{\text{cur}} \cup T_z \right) - f\left((T_{\text{cur}} - T_b) \cup T_z \right) \right)
\]

\[
c_{\text{rem}}^{\text{all}}(T_b) = f\left(T_{\text{cur}} \cup T_{z_{\text{pos}}} \right) - f\left((T_{\text{cur}} - T_b) \cup T_{z_{\text{pos}}} \right)
\]

\[
c_{\text{rem}}^{\text{non}}(T_b) = f\left(T_{\text{cur}} \right) - f\left(T_{\text{cur}} - T_b \right)
\]
Awarding (semi-opportunistic calculation)

- heuristic approximation is used for calculation of f'', for which $f(T) \leq f''(T)$ for any task set T
- $f''(T_{cur} - T)$ is calculated from $f''(T_{cur})$ assuming that none of the agent's unsettled bids are awarded
- Evaluation $c'_rem(T)$ may lead to unbeneifical awards

Taking awards

- An agent's award taker reads the awards and inserts the deliveries from the awards to the agent's deliveries T_{cur} and its transportation solution.
Experimental results

<table>
<thead>
<tr>
<th>Dispatch center</th>
<th>Deliveries</th>
<th>Vehicles</th>
<th>Average delivery length</th>
<th>Cost savings in 15 minutes</th>
<th>Cost savings in 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>65</td>
<td>10</td>
<td>121 km</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>A2</td>
<td>200</td>
<td>13</td>
<td>169 km</td>
<td>12%</td>
<td>18%</td>
</tr>
<tr>
<td>A3</td>
<td>82</td>
<td>21</td>
<td>44 km</td>
<td>31%</td>
<td>34%</td>
</tr>
<tr>
<td>B1</td>
<td>124</td>
<td>18</td>
<td>145 km</td>
<td>11%</td>
<td>23%</td>
</tr>
<tr>
<td>B2</td>
<td>300</td>
<td>15</td>
<td>270 km</td>
<td>9%</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>771</td>
<td>77</td>
<td>187 km</td>
<td>11%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Table 1. Columns 2 - 4 characterize the one week real vehicle and delivery data of the experiments, and the last two columns show results of the negotiations.
Questions?